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MULTIAMICABLE NUMBERS 

GRAEME L. COHEN, STEPHEN F. GRETTON, AND PETER HAGIS, JR. 

ABSTRACT. Multiamicable numbers are a natural generalization of amicable 
numbers: two numbers form a multiamicable pair if the sum of the proper 
divisors of each is a multiple of the other. Many other generalizations have 
been considered in the past. This paper reviews those earlier generalizations 
and gives examples and properties of multiamicable pairs. It includes a proof 
that the set of all multiamicable numbers has density 0. 

1. GENERALIZATIONS OF AMICABLE NUMBERS 

Two natural numbers are said to be amicable if the sum of the proper divisors 
of each of them equals the other. Thus, where a denotes the positive divisor 
sum function, m and n are amicable if 

(1) a(m) - m = n and a(n) - n = m. 
This condition can be abbreviated to a(m) = a(n) = m + n. We assume that 
m f n. (If m = n, then m is perfect.) It is usual to order pairs of amicable 
numbers according to the size of the smaller member. The smallest pair of 
amicable numbers, known to the Pythagoreans, is 220 and 284. Many of the 
classical mathematicians, such as Fermat, Mersenne, Descartes, Legendre, and 
particularly Euler, studied amicable numbers. Over fifty thousand pairs are 
now known, and many techniques are known for generating new pairs from old 
ones, although these will not always be successful. It has not been determined, 
however, whether there are infinitely many pairs of amicable numbers. For 
a discussion of these and for further references, see Battiato and Borho [11, 
Guy [10] and te Riele [18]. 

A number of generalizations appear in the literature. 
Our first, due to Dickson [6], defines k natural numbers ni, n2, ... nk 

to be an amicable k-tuple if 
k 

a(ni) = nj for i = , ...,k, 
j=l 

that is, if the sum of the proper divisors of each equals the sum of all the others. 
Dickson gave ten examples of amicable triples (not counting examples in which 
all ni are equal). 
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Mason [14] applied Euler's approach for finding amicable pairs to Dickson's 
definition in order to generate more amicable (pairs and) triples, in addition 
to 14 amicable quadruples, three amicable quintuples and seven amicable sex- 
tuples. (More could now be quickly obtained. The method makes use of the 
current list of multiperfect numbers with a certain property. These will be de- 
fined later.) Poulet [17] also spoke of "nombres multiamiables". These were 
k-tuples satisfying Dickson's definition. He gave 147 "nombres triamiables", as 
well as many amicable quadruples, quintuples and sextuples, including all those 
of Dickson and Mason, with whose work he was clearly familiar. Much later, 
Makowski [13] found two smaller examples of amicable triples: 22325 * 11, 
25327, 223271 and 233 * 5 * 13, 223 . 5 . 29, 223 . 5 * 29. Poulet had missed 
these. 

Yanney [20] defined the numbers nI, n2, ..., nk to be an amicable k-tuple 
(that is, using the same symbolism and name) when each equals the sum of the 
proper divisors of all the others. This can be shown to be equivalent to the 
requirement that 

k 

(k - 1)(ni)= Z nj for i=1, ... , k . 
j=1 

(In fact, as Yanney noted, E. B. Escott had asked much earlier whether such 
numbers exist; see Dickson [7, page 50].) There are trivial examples, such as 2, 
2, 2 ( k = 3 ) and 3, 3, 3, 3 ( k = 4 ). Yanney also gave the example 227 . 11, 
5.7.13, 7.83. 

Both of these definitions revert to that of an amicable pair, as originally 
defined, when k = 2. Yanney related his definition to that of Dickson, and 
gave a further generalization which includes both definitions. 

In Mason's paper, mentioned above, he also gave many examples of a further 
extension of Dickson's definition, due to Carmichael [2]: the numbers n,, n2, 

.. , nk are said to be a multiply amicable k-tuple if 
k 

(2) c(nt) = tZEnj for i=l, ..., k, 
j=1 

where t is an integezr. He deduced a table of factors by use of which "in con- 
nection with a table of the known multiply perfect [or multiperfect] numbers 
about six hundred multiply amicable number pairs can be obtained of multiplic- 
ity t = 2, 3". Presumably, many hundreds more multiply amicable numbers 
can now be found, including some with multiplicity t = 4. Other examples, 
derived independently of the table, are also given. 

The most investigated generalizations of amicable numbers are the aliquot 
cycles or sociable numbers. These are numbers ni, n2, ... , nk with the prop- 
erty that a(nI) - nI = n2, ((n2) - n2 = n3 -,., U(nk-1) - nk-I = nk, 
ca(nk) - nk = n I. When k = 1, we have a perfect number; when k = 2, we 
have an amicable pair. No examples are known with k = 3, but cycles with 
periods 4, 5, 8, 9 and 28 have been found. See Flammenkamp [9], Guy [10] 
and Moews and Moews [16]. 

There have also been numerous other investigations where the notion of am- 
icable numbers has been varied, rather than generalized. Either a different 
definition of "divisor" has been adopted, as with unitary amicable numbers (see 
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Hagis [11]) or infinitary amicable numbers (see Cohen [3]), or the conditions 
in (1) have been altered slightly. For the latter, see Guy [10] where pairs m, n 
with av(m) = a(n) = m + n - 1 or with a(m) = a(n) = m + n + 1 are discussed. 

See also Dickson [7, page 50], Krishnamurthy [12] and Sierpifiski [19, page 
187]. 

2. MULTIAMICABLE NUMBERS 

Multiamicable numbers are a natural generalization of amicable numbers, 
coming about in precisely the same fashion as the definition of multiperfect 
numbers generalizes that of perfect numbers. 

Traditionally, a number is perfect if the sum of its proper divisors equals 
the number; and a number is multiperfect if the sum of its proper divisors is 
a multiple of the number. Thus, n is y-fold multiply perfect if v(n) - n = 
yn. (Certainly, this is the approach of McDaniel [15] and others. However, 
Dickson [7, page 33], writes: "A multiply perfect or pluperfect number n is one 
the sum of whose divisors, including n and 1, is a multiple of n. If the sum is 
mnn, m is called the multiplicity of n .") Since we have a(n) = (y + 1)n, by 
a natural corruption of the original intent, such n became known as (y + 1)- 
perfect. 

We define natural numbers m and n to be multiamicable if the sum of the 
proper divisors of each of them is a multiple of the other. More precisely, we 
shall call m and n (a(, /3)-amicable if 

a(m) - m = an and 5(n) - n = ,3m. 

Of course, a and /3 must be positive integers, and if a = /3 = 1, then m 
and n are amicable. By a proper (a(, /3)-amicable pair, we shall mean one with 
a/3> 1. 

There is no extra interest in allowing the possibility that m = n, so we shall 
assume always that m < n, with the pair (a, /3) correspondingly ordered. 
Then 

(3) (a + 1)m < 5(m) < (a + 1)n and (3 + 1)m < 5(n) < (,3 + 1)n; 

in particular, the left-most inequality states that m is (a + 1)-abundant. This 
quickly implies some restrictions on m or a. For example, m cannot have 
just one distinct prime factor, and if it has precisely two distinct prime factors, 
then a = 1 and m is even. To prove the second of these remarks, suppose 
m = paqb is the prime factorization of m. Then 

a+1<f (m) p q 2 3 
m p-1 q-1 1 2 

so a = 1; the assumption 3 < p < q would lead to a contradiction. 
A search by brute force revealed the three (1, 7)-amicable pairs 

(I) m = 52920 = 23335 a 72 n = 152280 = 23345 a 47, 

(II) 
m = 16225560 = 23325 * 13 a 3467, n =40580280 = 23325 .13223. 29, 

(III) 
m =90863136-=25327.a13.3467, n =227249568 =25327.*13223*29, 
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the two (2, 5)-amicable pairs 

(IV) m = 3598560 = 25335 * 7217, n = 5957280 = 25335 * 7 a 197, 
(V) 

m = 3898440 = 23325 a 7213 .17, n = 6453720 = 23325 a 7 a 13 a 197, 

and the (1, 6)-amicable pair 

(VI) m = 76455288 = 23327213-1667, n = 183102192 = 24327 13a89.157. 

This comprehensive search showed that there are no other proper (a,,/)- 
amicable pairs m, n with m < 108. The search incorporated the fact that 
a < 4 for any such pair. To see this, suppose a > 5. Then m must have at 
least nine distinct prime factors, since otherwise, using (3), 

6 1 '7 m___5 11 13 17 19 6<a+1< a(m)<23 5 71l26l< m 2 4 610 12 16 18 
but then m > 2.3.5.7.11 * 13. 17. 19.23 > 108. (We note that H. Cohen 
[5] determined that there are 236 ordinary amicable pairs with smaller member 
less than 108 .) 

The factorizations of m and n in the preceding examples led to the following 
proposition, which in turn led to the others of the 78 known multiamicable pairs, 
listed in Table 1. 

Proposition 1. Suppose the natural numbers M, N, a, f and a satisfy 
gcd(a, M) = gcd(a, N) = 1 and 

v(a) M+aN _ /3M+N 

a - c(M) - a(N) 

Then aM, aN are an (a(, /3)-amicable pair. 

This follows easily using the multiplicativity of ac. 
To illustrate its use, observe from example (I) that we may take a = 1, 

,B=7, a= 235,and, for X and Y in 

(4) X+aY _ /X+ Y 
U(X) c (Y) 

X = M - 3372 and Y = N = 3447. Here, c(a)/a = 9/4. We will obtain 
further (1, 7)-pairs from other values of a satisfying c(a)/a = 9/4 = A, say, 
provided also gcd(a, M) = gcd(a, N) = 1 . We adopted the following approach 
to finding such values of a. Seek those a of the form b/p, where v(b) = 3b 
for some J (not necessarily an integer), and where p is a prime exactly dividing 
b. For such a, 

A- (b/p) _ 5(b) p Jp 
b/p p+ I b p+ 1' 

so that we require 3 = A(p + 1)/p. In our example, J = 9(p + 1)/4p. Clearly, 
we should take p = 3, so that 3 = 3, and then for b we need 3-perfect 
numbers exactly divisible by 3. Four such numbers are known: 233* 5, 253 .7, 
293a11*31 and 2133.11.43.127. If b is any of these, take a = b/3, provided 
such a is relatively prime to M and N. Three suitable values remain for a. 
The first is our original example (I); all three are given in line (ii) of Table 1. 
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TABLE 1. All known multiamicable pairs; the numbers aM and aN 

(X / M N a(a) a No. 
a 

(i) 1 6 23721667 247*89 157 14 3213 1 
9 C 

(ii) 1 7 3372 3447 9 x =1, 4, 5 3 

13 3Dx 
(iii) 1 7 13*3467 13223.29 T 7D13' x=2, 12, 16; 

25327 4 

(iv) 1 10 3 32 3 Cx, x = 3, 6 2 

(v) 1 26 5 52 5 Ex, 
x = 29, 30, 36, 37, 38, 39, 

40, 41, 45, 50, 51, 52, 53, 
54, 55, 56, 57, 58, 59, 60 20 

(vi) 2 4 33 3 13 21 Cx x= 3, 6 2 

(vii) 2 5 7217 7 *197 Dx 

x = 2, 3, 9, 12, 14, 16, 18, 
20, 21, 22, 23, 25, 26, 
31, 32, 33, 34, 35, 36 19 

(viii) 3 5 137 132 3 solutions found by S. Gretton; 

see Table 2 14 
(ix) 3 7 7 11 5 E46 1 
(x) 3 7 67 7 13 5 Ex, 

x = 31, 32, 33, 61, 62, 63, 64 7 

47 Hx (xi) 3 16 59 137 , X= 2, 3, 6, 11, 12 5 

Examples (IV) and (V) led similarly to line (vii) of Table 1. Examples (II) 
and (III) are a little more complicated, and will be discussed below. The (1, 6)- 
pair of example (VI) is repeated in line (i) of Table 1; it is our only example 
with different powers of 2 in m and n. 

In applying Proposition 1, we made extensive use of the list of all known 
multiperfect numbers recently compiled by Rich Schroeppel. Our list is labelled 
"mpfn731", and dated 4 November 1992. Schroeppel refers to multiperfect 
numbers as MPFNs, and there are 731 numbers in the list; hence the label. The 
numbers have multiplicities from 1 (for the trivial example 1) through 8; the 
32 known even perfect numbers are included. The list is available by electronic 
mail at rcs@cs.arizona.edu.1 

1Added March 1994: Many more multiperfect numbers have since been found, including some 
of multiplicity 9 and the 33rd even perfect number. At this time, almost 1800 multiperfect numbers 
are known, and certainly many more multiamicable pairs can be identified. A complete list, at the 
time, of 1385 multiperfect numbers was compiled and made available by Schroeppel in May 1993. 
The situation at present is very dynamic, and until it settles down we will not attempt any further 
comprehensive listing of multiamicable pairs. 
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In Table 1, the notation Xx refers to the numbering system which Schroep- 
pel has adopted for his list of multiperfect numbers (and which may well alter as 
subsequent multiperfect numbers are discovered and later lists are produced); 
X denotes the index (B, C, ... , H for 2-perfect, 3-perfect, ... , 8-perfect 
numbers) and x the number of the multiperfect number with that index. Re- 
ferring again to our example, Cl, C4 and C5 are the first, third and fourth 
of the 3-perfect numbers given above. 

Proposition 1 was also used in the following manner. Solutions of (4) are 
easily generated by computer. We determined all solutions M and N (for X 
and Y, respectively) with 1 < M < 945 and M < N < 945, subject also to 
some practical constraints to be described, and we then sought corresponding 
values for a, where a(a)/a = (M + aN)/a(M) = A, say. The earlier approach 
and Schroeppel's lists were again used for finding values of a. Since all numbers 
in the lists (except for the trivial 1) are even, we only considered odd values 
for M and N, and since 8 is the maximum multiplicity for numbers in the 
lists, and A = Jp/(p + 1), we only considered those solutions with A < 8. 
These constraints limit the possible values of a and f,. For the smallest odd 
2-abundant number is 945, so a(M) < 2M and 5(N) < 2N for any solutions 
in our range, and then 

8AM+aN M+aN 
a (M) 2M 

from which a < 15MM/N, and similarly ,B < 15N/M. We also required 
afl> 1. 

Furthermore, we restricted our attention to solutions M and N with greatest 
common unitary divisor equal to 1 (and we termed these primitive solutions), 
since we were able to show that if a primitive solution M, N led to an (a, ,B)- 
amicable pair, then any solution AM, AN, where gcd(A, M) = gcd(A, N) = 1, 
would lead at best to another (a, ,B)-amicable pair corresponding to the solution 
M, N. (Note: a divisor d of I is unitary if gcd(d, I/d) = 1 .) 

In one instance, arising from example (II) above, an iterative use was made 
of Table 1. That example required values of a satisfying c(a)/a = 13/4. The 
approach described above led to p = 13 and 3 = 7/2, and line (vii) of Table 1 
gives solutions of a(b)/b = 7/2. The resulting pairs are in line (iii). This 
approach cannot find values of a divisible by 7. We have seen such a value; it 
occurred in example (III) and is repeated within line (iii). 

In another instance, requiring the solution of c(a)/a = 14/3, no multiami- 
cable pairs can be generated in the manner described above. However, by means 
similar to those by which multiperfect numbers are found, fourteen admissible 
solutions of this equation were obtained, and the resulting multiamicable pairs 
are described in line (viii) of Table 1 and listed in Table 2. 

There were 61 solutions of (4) which satisfied our constraints and only seven 
of these led us to multiamicable pairs. It is interesting that the only one of the 
61 primitive solutions for which a > ,B (and atB > 1 ) was a = 8, /B = 7, 
X= 33, Y= 31. 

It will be noticed from Table 1 that there are 22 known examples of multiami- 
cable pairs m, n in which m I n. We can show by different means that there 
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TABLE 2. (3, 5)-amicable pairs 

137a and 132a, for the following values of a: 
25345 .7 11219 
27345211217 *19 .31 
210345211219 . 23 . 31 . 89 
215375211 .17 . 31 . 41 . 43 - 257 
217375 . 7 . 19237 . 41 . 73 . 127 
217375 . 7. 19437.41 73 151*911 
221395 11219223.31 61 *89 127.683 
221395 11219423.31 61 *89.151 683-911 
222375211 19 * 31 . 41 . 47 . 151 . 197 . 178481 
233375 7 11 * 41 * 83 - 331 * 43691 . 131071 
234375411 * 19 . 31 * 41 . 712127 . 683 . 1279 . 2557 . 5113 . 6829 . 122921 
237375 7* 11 * 41 * 83 - 331 * 43691 . 174763 . 524287 
2513185517. 19231.47.53.79.127.157.269.607.683.1213.1597 1613-2731 

*8191 * 36389.363889 
2513185517. 19431 47.53.79.151. 157.269.607-683-911.1213.1597.1613 

* 2731 * 8191 * 36389 . 363889 

are no other such examples, given today's knowledge of multiperfect numbers. 
(See Cohen [4]. This remark is subject also to the comment in the footnote 
above.) 

One important difference between our multiamicable pairs and Carmichael's 
multiply amicable pairs, defined in (2) with k = 2, is that the latter defini- 
tion requires v(m) = v(n). In fact, all the other generalizations of amicable 
numbers, other than that to sociable numbers, maintained such a requirement. 
Many of the techniques for finding amicable k-tuples and multiply amicable 
sets of numbers made strong use of this as the first step. 

We cannot rule out the existence of multiamicable pairs m, n with v(m) = 
v(n). The next proposition implies that any such pairs must be very large. 

Proposition 2. If m, n are a proper (a, /3)-anmicable pair and v(m) = v(n), 
then 7 < a < /3 and o(m)/m > /3 + 1. 
Proof. We have m + an = v(m) = v(n) = /3m + n, so that 

(5) (a - 1)n = (,3 - 1)m. 
We cannot have a = 1 , since then /B = 1; but a/B > 1 . Since m < n, then 
(5) implies that a < /3. If a = 2 then m I n, which is impossible when 
av(m) = c(n) and m f n. Observe next that, for positive integers r and s, 

(6) a(r)a(s) > a(rs) > ra(s) when r > 1 

so, using this and (5), we get 

c(a - 1)a(n) > i((a - I)n) = u((/3 - I)m) > (/3 - 1)a(m). 

We have a(m) -a(n) and /3 > a + 1, so, when a -I is prime, 
a = a(a - 1) > /3 - 1 > a. 

This contradiction shows that a f 3, 4 or 6. 
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Now suppose that a = 5, so that ,B > 6. From (5), 4n = ( I3 - 1)m. Write 
n = 2al, where I is odd. Then 

u(2a+2)a(l) - a(4n) = a((fl - 1)m) 

and v(n) = a(2a)y(l), so, by (6), 

a(2a+2))(n) = u((/3 - 1)m) > (/3 - 1)a(m). 
a(2a) 

Hence, since a(m) = v(n), 

2a+3 1 3 
13< 1 + 22a+1 -1 1 

Since /B > 6, we thus have a = 0, and then ,B < 8. There are two cases to 
consider. 

(1) If ,B = 6, then, using (6) and the fact that n is odd, we are led to 

7a(n) = a(4n) = u((/3 - 1)m) = a(5m) < a(5)a(m) = 65(m), 

and we have a contradiction. 
(2) If ,B = 7, then, since 2n = 3m, we know 3 1 n. Write n = 3bk, where 

k is not divisible by 3. Then 2 * 3b- 1k = m and k is odd, so 

3a(3b-1)a(k) = a(m) = 5(n) = u(3b)a(k) 

We cannot have 3u(3b-1) = a(3b) for any b, so again we have a 
contradiction. 

This proves that a > 7. Note finally that, using (5) and the fact that ,B > 
a> 1, we have 

fl-i a/ -1 
v(m) = m+ an = m+ 1 m= m > (,3 + 1)m. 5 

Two interesting observations arise from this proof. First, the right-hand 
inequality in (6) is equivalent to o(rs)/rs > a(s)/s ( r > 1 ), which is a re- 
statement of the following familiar result in this area of study: if u is a proper 
divisor of v, then o(u)/u < o(v)/v. Secondly, we proved in passing the gen- 
eral result that if v(m) = v(n) (where m < n) and we write xm = yn for 
positive integers x and y, then y > 6 (and y cannot be prime). The fact that 
v(6) = o(1 1) shows that this is best possible. 

We end with a result concerning the density of multiamicable numbers. In [8], 
Erdos proved that amicable numbers have density 0. His proof rested on the 
following lemma: For a fixed integer N > 0, the set of integers I for which N 
does not divide v(l) has density 0. The statement and proof of the following 
proposition are due to the referee. 

Proposition 3. Let M(x) denote the number of multiamicable pairs m, n with 
m < n and m < x. Then M(x) = o(x) as x-*oo. 

Besides Erdos's lemma, above, we shall also need the following. 
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Lemma. For each number x > 1, we have 

C(t)2 

E t2<cx 
t<x 

where c = C(2)24(3) and 4 is Riemann's zeta function. 

Proof of the Lemma. We have o(t)/t = Z21t 1/u, so that 

.C(t)2 1 _1 [x 

t<x t<x ult, vlt UV u<x _<X UV [[u, V]J 

where [u, v] is the least common multiple of u and v. Hence 

1E _ < E 1 < gcd(u, v) E d 
X t2 - UV[U V ] u2v2 u2v2 

t<x u<x, V<x U, v d gcd(u,v)=d 

d 1 1 

dEl,v (dU')2(dvt) dd3 ul, v/U2 
V' 

which is C(3)C(2)2. 

Proof of Proposition 3. By Erdos's result, we may restrict our attention to proper 
multiamicable pairs, since 

(7) A(x) = o(x) 

if A(x) is the number of amicable pairs m, n with m < n and m < x. Let K 
be a large number and let M1 (x) denote the number of proper multiamicable 
pairs m, n with m < x and c(m)/m > K. By (3), if a pair m, n is (a(, ,B)- 
amicable, then a < a(m)/m, so that the number of n 's that can correspond 
to a given value of m is less than c(m)/m. Thus, by the Lemma, 

(8) Ml X) <- 
a(m) 1 o(M)2 c 

(8) Ml(x)? Z m -KZ m2 <KX. 
m<x, r(m)/m>K m<x 

Let M2(x) denote the number of proper multiamicable pairs m, n with 
m < x, o(m)/m < K and o(n)/n > K3. If such a pair m, n is (a, /3)- 
amicable, then n < an = v(m) - m < Km < Kx, so that n < Kx and 
m > n/K. It follows that ,B = (a(n) - n)/m < c(n)/m < Kc(n)/n, so that the 
number of m 's that can correspond to a given value of n is less than Kar(n)/n . 
Thus, 

(9) M2 (X) < , Ku(n) < 
1 a (n 2 

< Kc 
n K2L~n 2 <KX 

n<Kx, r(n)/n>K3 n<Kx 

by the Lemma. 
Finally, let M3(x) denote the number of proper multiamicable pairs m, 

n with m < x, c(m)/m < K and cr(n)/n < K3. As above, if such a pair 
m, n is (a(, /3)-amicable, then n < Kx, m > n/K, (a < c(m)/m < K and 
/3 < c(n)/m < K4. Let k be the smallest integer such that L = ak/3k > K7 
(recalling that af i> 1 ). We consider all (a, /3)-amicable pairs m, n that are 
counted in M3(x), for these values of a and /3. The number of m's such 
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that m < x and L t v(m) is o(x), according to Erdos's lemma. Similarly, the 
number of n's such that n < Kx and L t v(n) is o(x). For the remaining 
(a, ,B)-amicable pairs m, n which are counted in M3(x), we have L I v(m) 
and L I v(n). For such a pair, an _ -m (mod L) and Bm --n (mod L) 
so that (a/I - l)m 0_ (mod L). It follows that L I m. The number of mr's 
such that m < x and L I m does not exceed x/L. Further, L > K7 and 
there are at most K (a, ,B.)-amicable pairs containing each such m. Thus the 
number of pairs counted in M3(x) that correspond to these values of a and ,B 
is at most x/K6. Now we consider all multiamicable pairs m, n counted in 
M3(x) . If such a pair is (a, ,B)-amicable, then a < K and ,B < K4, so that the 
number of different pairs a, ,B for which we may argue as above is bounded 
by K5. Therefore, 

( 10) M3(X) < Kx + o(x). 

Since M(x) = A(x) + Ml(x) + M2(x) + M3(x), and since K can be taken 
arbitrarily large, Proposition 3 follows from (7), (8), (9) and (10). F- 

We mention finally that we have considered analogous questions for unitary 
and infinitary divisors, and the results may be obtained from the first-named 
author. 
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